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Introduction
• What are thermally-induced dynamics?

8 Structural dynamics resulting from time-varying temperature
distributions typically initiated during orbital eclipse
transitions.

• What are the consequences of the disturbances?
    Due to conservation of angular momentum, motions of

flexible structures result in rigid body rotations of the entire
satellite leading to pointing errors and upsetting stability.

• What types of spacecraft structures are typically
susceptible?
8 Booms (particularly STEM-type)
8 Solar arrays (rigid panel and flexible blanket)



The Washington Post
November 11, 1990

Motivation



Classification of thermally-
induced dynamics

• Thermoelastic motions
8 Thermal snap (or Thermoelastic shock)
8 Thermally-induced vibrations
8 Thermal flutter

• Stick-slip motions
8 Thermal creak



Satellite attitude
disturbances

• Booms/masts
8 OGO series (1960’s)
8 IPEX II (1997)

• Flexible blanket solar arrays
8 Hubble Space Telescope (1990)
8 Space Flyer Unit (1996)
8 ADEOS (1997)

• Rigid panel solar arrays
8 TOPEX (1991)
8 Upper Atmosphere Research

Satellite (1990)

Solar Heating

Thermally-Deformed
Solar Array

Rigid Body
Rotations

Undeformed Solar Array

Satellite
Before Heating

Example:
Solar array disturbance



Flight data

Thermal snap
disturbance

UARS attitude acceleration (sunrise)
 Reference:  Lambertson, M., Underwood, S., Woodruff, C., and Garber, A., "Upper Atmosphere
 Research Satellite Attitude Disturbances During Shadow Entry and Exit,”  AAS 93-319, 1993.

HST attitude rate (sunrise)
Reference:   Foster, C.L., Tinker, M.L., Nurre, G.S., and Till, W.A., "The Solar Array-
Induced Disturbance of the Hubble Space Telescope Pointing System," NASA TP-3556,
May 1995.

Thermally-induced 
vibrations

disturbance



Previous research

• Boley (1956)
• Beam (1969)
• Zimbelman (1990)
• Thornton and students (1990’s)

8 Kim, Chini, and Gulick
8 Foster, Blandino
8 Johnston



Research objectives
• Develop an understanding of thermally-induced

structural motions of rigid panel solar arrays

• Develop analytical and computational models to
predict solar panel thermal-structural performance

• Investigate interactions between thermally-induced
motions of flexible appendages and satellite attitude
dynamics

• Perform laboratory experiments



Analytical studies

• Orbital eclipse heating

• Appendage thermal response

• Appendage thermal-structural response

• Coupled satellite dynamics response



Orbital eclipse heating
GEO Orbit

LEO Orbit
Penumbra

Penumbra

UmbraSun

Earth

Satellites

Eclipse regions:
•  Umbra (full shadow)
•  Penumbra (partial shadow)
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Approximate penumbral
transition times:

LEO:   10 s
MEO:   30 s
GEO: 130 s



Penumbral heating
calculation
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Thermal analysis
• One-dimensional transient heat transfer model
• Time-varying incident solar heat flux from orbital

eclipse heating analysis
• Solutions obtained using commercially available FEA

program (ABAQUS)
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Thermal-structural analysis
• Temperature distribution

8 Results from thermal analysis
8 Assume temperature varies through panel thickness only

• Thermal moment
8 Acts as forcing term in solar panel equations of motion
8 Enters problem through structural boundary conditions
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Satellite dynamics analysis

Heat flux, S(t)

• Simple satellite model:  hub-appendage system
8 Rigid hub with cantilevered flexible appendage
8 Hybrid coordinate dynamical model
8 Only planar dynamics considered



Problem formulation
• Energy methods approach

8 Start with kinetic and potential energies for system
8 Thermal terms enter through potential energy

• Governing equations
8 Generalized form of Lagrange’s equations used to obtain

equations of motion and boundary conditions
8 Equations of motion for hub and appendage are coupled

• Solutions
8 Quasi-static
8 Dynamic



Equations of motion
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Appendage displacements, v(x,t):



Discrete form of
equations of motion
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Assumed solution:

Discrete equations of motion:

= generalized modal coordinates
= shape functions 
   (cantilever beam eigenfunctions used)

= quasi-static solution



Disturbance torque
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Equation of motion for rigid hub:



Characteristic parameters
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Numerical studies
• Solar panel thermal response

8 Solutions obtained using finite element analysis
8 Results

• Surface temperatures
• Through-the-thickness temperature difference
• Time derivatives of temperature difference

• Satellite dynamics response
8 Solutions obtained by numerical integration of discrete

equations of motion using central differences method
8 Results

• Flexible appendage displacements, velocity, and acceleration
• Rigid hub rotation angle, angular velocity, and angular

acceleration



Solar panel thermal response

Parameters:
Sunrise eclipse transition
600 km circular orbit

Results:
tpenumbra = 8.6 s
∆Tss = 11 K
trise = 60 s
Peak d(∆T)/dt = 0.4 K/s
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Flexible appendage response
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Appendage parameters:
L = 9m
W = 3 m
F1 = 0.5 Hz (tS = 2 s)
Br = 30

Results:
∆T = 11 K
Tip displacement, v = -0.4 m
vmax/vqs,max = 1.0
Peak velocity = -0.03 m/s

Quasi-static response
Thermal snap transients



Rigid hub response

Hub parameters:
Rhub = 1 m
Mass = 5000 kg
Ihub/Iappendage= 1.0

Results:
Torque = 1/-.6 N-m
Attitude angle, θ = 0.01rad
θmax/θqs,max = 1.0
Attitude rate = 9E-4 rad/s

Thermal snap 
disturbance
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Classification of thermally-
induced dynamics

Thermally-induced vibrationsThermal snap
tr = 60 s
ts = 2 s
Br = 30
Maximum (v/vqs) = 1.0

tr = 60 s
ts = 17 s
Br = 3.5
Maximum (v/vqs) = 1.2
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Experimental studies
• Objectives

8 Characterize the thermal-structural response of representative
solar panel test articles

8 Investigate rigid panel solar array ‘thermal snap’ phenomenon
8 Study deployment hinge support effects
8 Provide data for validation of analytical models

• Test Articles
8 Honeycomb sandwich panels

• High aspect ratio panel (L/W = 8)
• Low aspect ratio panel (L/W = 2)

8 TRACE solar panel assembly



Laboratory test set-up

Schematic of test set-up

Photograph showing
solar panel in test fixture

Infrared Lamp Array

BackstopSolar Panel Test Article

Mounting
Plate

1.5 m

1.0 m'

Laser Displacement Sensor Platform Structural Support



Solar panel test article

Stiffener

Antenna
Mount

Hinge
Mount

Bumper Stop (2)

Deployment
Hinges (2) Restraint

Mount

Connector Mount

• ETU hardware from TRACE satellite
• Overall size:  1 m x 0.5 m
• Aluminum honeycomb sandwich panel substrate
• Deployment hinge supports



Deployment hinge

Solar Panel

Tang
(attaches to satellite)

Pin-Detent Latching Mechanism Clevis
(attaches to solar panel)

Damper

Torsion Spring



Deployment
hinge supports Rigid supports

Structural supports



Support characterization tests
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Thermal response
Single Thermal Cycle Test

Time (s) Event
0 Test begins
20 Lamp array on
2020 Lamp array off
3000 Test ends

∆T=T - Tfront back

Front Back

Heat
Flux, S

Results:
S = 2000 W/m2

Tfront = 380 K
Tback = 370 K
∆T = 10 K
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Thermal response - cont.
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Structural response
+z, +v

+x

Heat Flux, S

-v(L,y,t)

+z, +v

+y

-v(L,y,t)

Results at x=L:
Displacement = - 5 mm
Velocity = 0.3 mm/s
Acceleration =0.2 mm/s2

Quasi-static response
Thermal snap transients
Intermediate transients
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Effect of structural supports
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Analysis of experiments
• Objective is to predict the thermal-structural response

of the solar panel to simulated orbital eclipse
transition heating.

• Finite element analysis
8 Solutions obtained using commercially available finite

element program (ABAQUS)
8 Three-dimensional model required

• Non-uniform radiant heating
• Plate bending behavior

8 Utilized general purpose shell elements
8 Sequentially-coupled thermal-structural analysis using same

mesh for both analyses
8 Predictions validated through comparison with test data



Comparison of analysis and
experiment

Heat-up transient Cool-down transient

TRACE solar panel structural response

0 25 50 75 100
t (s )

-8

-4

0

4

D
is

pl
ac

em
en

t(
m

m
)

TES T
FEA MODEL 1
FEA MODEL 2

0 25 50 75 100
t (s )

-0.5

0

0.5

V
el

oc
ity

(m
m

/s
) TES T

FEA MODEL 1
FEA MODEL 2

0 25 50 75 100
t (s )

-0.2

0

0.2

0.4

A
cc

el
er

at
io

n
(m

m
/s

2 )

TES T
FEA MODEL 1
FEA MODEL 2

2000 2025 2050 2075 2100
t (s )

-8

-4

0

4

D
is

pl
ac

em
en

t(
m

m
)

TEST
FEA MODEL 1
FEA MODEL 2

2000 2025 2050 2075 2100
t (s )

-0.5

0

0.5

V
el

oc
ity

(m
m

/s
) TEST

FEA MODEL 1
FEA MODEL 2

2000 2025 2050 2075 2100
t (s )

-0.2

0

0.2

0.4

A
cc

el
er

at
io

n
(m

m
/s

2 )

TEST
FEA MODEL 1
FEA MODEL 2



Summary
• Thermally-induced dynamics of spacecraft structures

are driven by time-varying temperatures distributions
resulting from sudden changes in thermal loading.

• Classification of thermally-induced dynamics
8 A quasi-static response consists of rapid, non-oscillatory

bending motions and results in a thermal snap disturbance.
8 Thermally-induced vibrations consist of a quasi-static

deformation with superimposed stable oscillations and result in
a harmonic disturbance at the fundamental frequency of the
appendage.  Thermal flutter is an unstable thermally-induced
vibrations response.

8 Thermal creak disturbances result from thermally-induced
stick-slip motions at frictional interfaces in mechanisms/joints.



Summary -cont.
• Analytical Studies

8 The temperature difference and its first and second time
derivatives are key parameters for predicting thermally-induced
dynamics.

8 The ratio of the temperature difference rise time and the period of
the fundamental mode of vibration can be used to assess the
potential for a thermally-induced vibrations response.

• Experimental studies
8 The TRACE solar panel test article exhibits a quasi-static

structural response to simulated eclipse transition heating with
thermal snap acceleration transients during heat-up / cool-down.

8 Deployment hinge nonlinearities influence solar panel thermal-
structural behavior and result in thermal creak disturbances.

8 Three-dimensional finite element analysis is required to predict
solar panel behavior accurately in the laboratory.
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